If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+240x-900=0
a = 12; b = 240; c = -900;
Δ = b2-4ac
Δ = 2402-4·12·(-900)
Δ = 100800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{100800}=\sqrt{14400*7}=\sqrt{14400}*\sqrt{7}=120\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-120\sqrt{7}}{2*12}=\frac{-240-120\sqrt{7}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+120\sqrt{7}}{2*12}=\frac{-240+120\sqrt{7}}{24} $
| 2v-10=4 | | 30-4v=v | | 28-5x=17+2x | | 19/4-31/2k=-1/4k+3/2 | | 4(9.75h−3)=150 | | 3x+5-2x-3=10 | | -2(t-5)=-10 | | 2(5x+2)=-5(5x-1) | | 6x+12–4x+9=0 | | 3(x+4)=2x+5x+10 | | 9v=48=v | | -2x+24=180 | | 5−3(w+4)=w−7 | | 12v+4=108-v | | -180=6(4v+1)+6 | | 2(x+2)-(x-1)=10 | | 4(3x+2)=-40 | | 6=6+6n+8n | | -3+10h=10h−3 | | 5x-3+4x-10=14 | | 15=5(1-m | | 15•+6=7+10x | | 6x(x+5)(x-2)=0 | | 5x+8=−2+10+x+4x | | -4=-6+n-3 | | 2(1-5a)=82 | | 4.5x-7.4=13.2x+20.44 | | 7(0.75+c)=2.8 | | 6x+3x=2x+4 | | 7x+10=8x+9 | | 28z-18-7z=12 | | 2x+14=5x-130 |